
A Design Framework for End-To-End Timing
Constrained Automotive Applications

Friedhelm Stappert∗, Jan Jonsson†, Jürgen Mottok‡, and Rolf Johansson§

∗Continental, Systems and Technology Automotive, Regensburg, Germany
†Chalmers University of Technology, Göteborg, Sweden
‡Regensburg University of Applied Sciences, Germany

§Mentor Graphics, Göteborg, Sweden

I. INTRODUCTION

In modern cars more and more algorithms are imple-
mented as distributed systems. For example, an ACC-
System (Adaptive Cruise Control) today requires a min-
imum of 5 ECUs (Electronic Control Units): Engine ECU,
Gearbox ECU, Breaking ECU, the MMI-Interface, and an
ECU operating the radar system. Mastering the overall
timing behaviour of such a distributed system is a funda-
mental challenge during design. The so-called end-to-end
timing from a sensor to an actuator must meet a certain
deadline, also claimed by functional safety regulations like
IEC 61508 and ISO DIS 26262. In order to fulfil such
requirements, the timing on the bus, the ECU-timing, and
the timing of the communication controller have to be taken
into account.

Control engineering and body electronics are two im-
portant domains in automotive systems. Both domains
use multi-rate functions and rely on correct end-to-end
timing, but they essentially differ in the meaning of end-
to-end delays. Control systems that continuously drive
external actuators shall ensure that these driving signals
do not exceed a maximum age. ’Data age’ is a concept
in the heart of control engineering theory. Clearly, if the
same signal is consumed twice, the second consumption
is critical because the (unchanged) signal at the time of
the second consumption is older. In body electronics, the
situation can be very different. In a door lock system, the
first arriving signal will command the consuming device
to lock the door. Any later signal duplicate can not lock
the door ’more’. This shows that there exist at least
two different semantics of end-to-end timing. In addition,
constraining timing is not always about delays between
stimuli and responses. An important class of constraints
deals with the synchronization between either stimuli or
responses, respectively. Referring again to the door lock
system, the reaction time between button pressed (stimuli)
and door locked (response) could typically have a span
between fastest and slowest reaction of several hundreds
of milliseconds. However, the tolerated difference between
when the different doors are locked is perhaps just some
tens of milliseconds.

There is, consequently, a need for classification of the
semantics of end-to-end timing constraints in terms of the
treatment of duplicate data and the synchronization of

input or output data. Also, when applications are composed
of different subsystems, it is important to know how the
effects of duplicated or purged signal data propagate over
subsystem interfaces and what the net effect of them are
on the application itself.

The main goal of the TIMMO1 project [1] is to define
a predictable development process that is able to handle
timing in all design phases and able to verify as well
as validate the timing behaviour of a real-time system
throughout the process.

II. PROJECT CONTEXT

The increasing importance and complexity of electronic
functions in the electric/electronic (E/E) systems in mod-
ern cars often requires the integration of widely different
subsystems like powertrain, chassis, and infotainment.
Furthermore, multiple suppliers are involved in the design
of such systems, which requires the need for unambiguous
exchange of engineering data among all involved parties.
In response to this trend, the automotive industry is estab-
lishing standards that support the interoperability among
the different stakeholders. AUTOSAR (’AUTomotive Open
System ARchitecture’) [2] is the most important project
in this area. It is a development partnership for automo-
tive electronics, with the purpose of developing an open
industry standard for automotive software architectures.
Furthermore, AUTOSAR defines a methodology which
supports the distributed development of these electronics
systems.

However, the scope of the AUTOSAR standardization
does not cover all aspects of automotive E/E system
design. Things like requirements engineering and feature
modeling are outside the scope. Also things like abstract
architectures for identifying commonalities in the realization
of different features are outside the scope of AUTOSAR. To
get a more complete modeling framework for automotive
E/E system design, the EC funded research projects
ATESST and ATESST2 [3] have developed an architecture
description language called EAST-ADL2, which comple-
ments AUTOSAR.

1This document is based on the TIMMO project in the framework of
the ITEA2, EUREKA cluster programme Σ! 3674. The work has been
funded by the German Ministry for Education and Research (BMBF)
under the funding IDs 01IS07002(A-K), and the Swedish Agency for
Innovation Systems (VINNOVA) under the funding IDs P30619-1/2. The
responsibility for the content rests with the authors.



Fig. 1. Phases of the methodology and their relation to abstraction
levels

The objective of the EAST-ADL2 is to define an informa-
tion model capturing all relevant engineering information in
a standardized way. It defines several abstraction levels (as
shown in Figure 1 that reflect different views and details
of the architecture and implicitly different phases of an
engineering process.

By means of these abstraction levels, an automotive
system is modelled from a very abstract ’feature model’
down to the concrete implementation in hardware and
software. The AUTOSAR architecture covers the two lower
abstraction levels, i.e. implementation and operational
level.

The TIMMO language and methodology define timing
information on all abstraction levels of the EAST-ADL2 ar-
chitecture, thereby extending it with a formal timing model,
which is also compatible with AUTOSAR. Therefore, it is
now possible to model timing information on all abstraction
levels of the AUTOSAR and EAST-ADL2 architectures.

III. THE TIMMO DESIGN FRAMEWORK

The first technological challenge of TIMMO was to de-
velop a common, standardised approach to handle timing
constraints throughout the entire development process.
The objective was to find a solid theoretical base for
addressing the timing aspects of distributed embedded
automotive systems. This also includes the definition of
a common specification language covering semantically
sound timing aspects. The second main challenge was
to develop an accompanying methodology which explicitly
includes cross-company exchange aspects.

A major result of the TIMMO project is the timing
augmented description language (TADL), which allows
expressing timing information, such as requirements and
properties, of automotive electronic systems. TADL is
specified as a UML metamodel and extends corresponding
EAST-ADL2 and AUTOSAR metamodels, with clear refer-
ences to relevant elements in the extended models. In
order to facilitate the language integration with AUTOSAR
and EAST-ADL2, the TADL Domain Model is done ac-
cording the AUTOSAR Meta Modeling Guidelines. This
means that the AUTOSAR Template Profile, the so-called
atp stereotypes, is used in the definition of the domain
model. As also the EAST-ADL2 domain model is done
according to this guideline, all these three languages are
built on the same meta meta model thus facilitating a
smooth integration.

On the higher abstraction levels (vehicle, analysis, and
design) structural modeling is performed as defined within

EAST-ADL2. On the implementation level AUTOSAR mod-
eling is performed. The TADL constraints are defined sep-
arately from the structural modeling and refer to structural
elements via Events and Event Chains. The events are
tailored to refer to specific elements in the structural model,
i.e., different sets of events are available for the EAST-ADL
model and the AUTOSAR model. Additionally, all TADL
constraints carry a timing bound and a mode.

However, in order to boost its effectiveness and, in par-
ticular, in order to facilitate communicating and exchang-
ing timing information between two or more contracting
parties, it is necessary to put TADL into a development
context. This is the purpose of the methodology. The
methodology is based on a development process induced
by EAST-ADL2 and AUTOSAR, where timing issues are
particularly highlighted and emphasized. Other, non-timing
related, issues are described with less detail.

The issue of unambiguous communication between par-
ties becomes quite evident in the light of component-based
development. In early phases of the development process,
the vehicle manufacturer partitions the system (vehicle)
into subsystems. Each subsystem is, in the general case,
developed by a different supplier. Afterwards, the subsys-
tems have to be integrated into the full system again. Such
distribution of work needs to be thoroughly specified and
with little room for alternative interpretations, in particular
with respect to timing requirements and constraints. The
purpose of the methodology in this context is to state what
timing information could be expected at which point in
the development process. It answers questions like what
information is needed to perform a certain analysis, like
timing budgeting, and where does it come from. This
relates to the issue of traceability. With this mechanism
it becomes clear on which other types of timing informa-
tion the information currently under discussion depends.
Such dependency information could moreover prove useful
when two parties negotiate about which information to
share.

On the way down to the implementation, the software
components are typically first designed by control en-
gineers who use tools such as Matlab/Simulink or AS-
CET. They define ’function blocks’ that are later realized
as AUTOSAR ’runnables’ (by software developers) and
distributed to tasks that are finally put under operating
system control (by the ECU integrators). If a software
component only maps to one ’code block’ or runnable,
it can be mapped to a single task. Software components,
whose realization is distributed to several runnables with
different execution rates (also defined by the function
developer), will most likely be mapped to several tasks
with different periods. This consequently leads to under-
and over-sampling in the communication among tasks and
between tasks and communication frames with several
important implications for the meaning of end-to-end timing
(as shown in the next section).

The TIMMO methodology is being developed based on
the following four principles:

• Focus on timing



• Align with EAST-ADL2 and AUTOSAR
• Assume a system being built from scratch
• Ideal process flow

The methodology focuses on timing by making everything
timing related explicit. This timing information often, if not
always, refers to one or more EAST-ADL2 or AUTOSAR
entities. If such a dependency has been identified, it has
been incorporated in the methodology, otherwise it has
been left out or hidden in other activities or work products.
The aim has been to find a smallest ’timing related
closure’. As TADL itself interfaces the de-facto standards
EAST-ADL2 and AUTOSAR, and thereby inherits most of
their properties, there is a natural implication to apply this
alignment also to the methodology. Systems are devel-
oped according to a vast number of different scenarios
depending on the current situation. It would not be feasible
to cover all of them. The methodology therefore focuses
on the scenario where a vehicle is built completely from
scratch. Other scenarios can, to a large extent, be seen
as being partial specializations or variants of this scenario.
Real-life development is normally full of iterations. They
can occur from virtually any activity to any other activity.
Including every such occurrence would inevitably hide the
main process flow. Therefore, only iterations that constitute
a natural part of an idealistic fault-free development are
included. Re-iterations due to a faulty design are left
implicit.

A. Methodology Overview

The TIMMO methodology consists of four main phases:
vehicle definition, system definition, design, and implemen-
tation. These map one to one with the abstraction levels
of EAST-ADL2, as depicted in Figure 1. The first three
phases are based on the implicit methodology induced
by the main work products of EAST-ADL2: vehicle feature
model (VFM), functional analysis architecture (FAA) and
functional design architecture (FDA). The implementation
phase is, on the other hand, based on the AUTOSAR
methodology. The following paragraphs summarize the
content of each phase, and exemplify its main deliverables
on an ABS system (anti-lock brake system) with focus
on the handling and refinement of an end-to-end timing
requirement.

B. Vehicle definition phase

The vehicle definition phase defines interacting features
and use cases, and high-level timing requirements on
these. The ABS system is itself a feature, and has certain
interactions with the speedometer feature. Timing require-
ments in this phase are mostly concerned with end-to-
end delays and synchronisation. A few examples are listed
below:

• End-to-end delay: The vehicle must start decelerating
within ’driver’s reaction time’ (500ms) after the driver
has indicated his wish to do so.

• End-to-end delay: The wheels may never lock for a
’continuous period of time’ (> 100ms).

Fig. 2. End-to-end-requirements on a functional architecture of an ABS

• Inter-feature end-to-end delay: Data from the
speedometer feature must reach the ABS ’instantly’
(within 50ms).

• Synchronisation: The speed information coming from
different wheels must arrive ’simultaneously’ (differ-
ence < 50ms) to the ABS.

The requirements are intentionally made fuzzy, and writ-
ten from an outside perspective. These will be refined and
made more accurate in later phases. If a more accurate
deadline is stated in the system specification, or if the
development team can provide a precise value based on
experience, that value might be stated in a refined version
of the vehicle level requirements with traceability to the
original requirement. At this high level of abstraction, there
is no infrastructure to perform any deep analysis. However,
the methodology indicates that timing requirements could
be validated with respect to feasibility.

C. System definition phase

The features are then refined in the system definition
phase into analysis functions. These do not need to be
a strict refinement of the features, but one function may
realise parts of several different features. Figure 2 presents
the part of the vehicle system related to the ABS. For the
sake of the example, we say that the Base brake function
produces a message advocating a brake force linear to the
pedal angle, or to a similar input message received from,
e.g., the cruise control system. The linear brake message
can then be modified by the ABS function depending on
the values of the wheel speeds and the estimated vehicle
speed. The resulting brake force message is forwarded
to the brake actuator. It should be noted that there are
a few interesting data dependencies outside the scope
of the ABS, which could influence overall system timing
behaviour and which should be taken into account when
analysing the system. The cruise control function is clearly
dependent on speed information, in order to compute an
appropriate engine torque, or ask for deceleration from the
braking system. The vehicle speed is in turn computed
from the four individual wheel speed values.

End-to-end delays on the feature model can in this
phase be budgeted with respect to the function structure.
An example of a budgeted end-to-end requirement is also
shown in Figure 2, based on how such requirements
are represented in the TADL metamodel. The overall



requirement (500ms) refers to an event chain, which in
turn refers to one ’stimulus’ event (left in the figure) and
one ’response’ event (right in the figure). Each event is
associated with a port on a function. Though not explicitly
stated in the figure, the events in this example refer
to a value being changed on the associated port. The
overall requirement shall consequently be read as ’from
change of pedal angle until the brake force changes, there
shall at most elapse 500ms’. This overall event chain
is then divided into segments in the following budgeting
process. The segments are recursively also event chains.
Two segments are shown in the figure: one related to
communication between functions (left hand side), and
one related to the execution time of a function (right hand
side). Events and event chain segments can be shared
between several high-level event chains. If draft high-level
behavioural models (e.g. Matlab/Simulink or ASCET) are
provided, the budgeting of segments can be based an
early assessments of communication and execution times.

In general, the following timing information is dealt with
in the system definition phase:

• End-to-end delay: From change of pedal angle until
the brake force changes, there shall at most elapse
500ms.

• Timing budgets for event chain segments.
• Synchronisation: The speed information coming from

different wheels must arrive to the ABS function with
a maximal difference of 50ms between the first and
last messages.

Given that high-level behavioural models are available,
early control performance analysis with respect to timing
can be performed. By doing this, many control related
mistakes will be caught early in the development pro-
cess. Ergonomic aspects related to timing can also be
assessed at this stage. This assessment focuses on how
the user/driver perceives the system. In our case, 500ms
between pressing the pedal until the brakes start actuating
might be perceived too long resulting in annoyance and
repeated pedal pressing. It might neither be accepted from
safety point of view. However, for the sake of the example,
we retain this deadline.

D. Design Phase

The design phase refines the analysis functions into
design functions. The phase also defines hardware and
communication architectures onto which the design func-
tions are mapped. The level of detail of the functions is
moreover higher than in the system phase, and embryos
of hardware drivers emerge in the form of ’Local device
managers’.

The design phase typically contains the same type of
timing requirements as in the system definition phase,
but with a higher degree of accuracy based on the more
detailed models. This refined level allows for making good
estimations and simulations on the timing performance,
such as CPU utilisation and bus load. Other analysis
that can be performed in this phase are early response

time analysis and schedulability analysis. All these high-
level estimates provide a good foundation for finding a
reasonable system configuration in the implementation
phase, thus avoiding many unnecessary iterations.

E. Implementation phase

The implementation phase provides all low-level details
to the design, as specified by AUTOSAR. The design
functions are further refined into software components.
Detailed timing properties such as task periods and bus
frame intervals become evident. Analysis performed in this
phase have the potential of being extremely accurate as
all interfering details can be modelled. The implementation
phase is subdivided into the following four sub-phases
(called ”views” in AUTOSAR) which represent the main
activities to do when implementing a system.

• VFB View, where SWCs are interconnected over a
virtual bus. It focuses on the communication patterns,
and abstracts away all hardware related aspects.

• System view, where the network is defined, the soft-
ware components are distributed to the ECUs, and
the ECUs are configured.

• Component view, where the software components
with their runnables are implemented.

• ECU-View, where the different ECU details (operating
system, runtime environment, COM-stack etc.) are
configured and the ECU executable is generated.

We will now take a closer look at the system view,
considering the ABS example (Figure 2) and its end-to-
end delay property.

The implementation sub-phase consists of two major
development paths, which represent the network- and the
ECU-development. On the network development path, the
communication matrix or, in case of a FlexRay bus, the
bus schedule is defined. The development of the bus
timing is restricted by several constraints from different
points of the methodology, from the system view or other
views of the implementation phase. The ECU-development
path, on the other hand, leads over to the ECU view of
the implementation phase. The development steps on this
path have also influence as well as they are influenced
by the network development path. The system view of the
implementation phase describes the different ECUs in the
system and the SWC mapping to them and in the end,
together with the communication matrix, the overall system
architecture. Timing analysis can be performed at the end
of each path and after the join of the paths. In the paths
timing load is analysed with respect to communication
and computation resources respectively, whereas the third
analysis focuses on the mapped system with respect to
schedulability and simulation. Applying the ABS example
to the implementation phase, this leads, amongst other
things, to a refinement of the event chain.

Taking a look at the overall system architecture, a
distribution of the different SWCs to hardware entities,
namely ECUs, sensors, actuators, and buses is necessary.
For example, there may be one ECU for the sensor
functionality in the Pedal SWC and the base braking



system. This ECU is connected to a second one, which
contains the ABS functionality and the SWC for the brake
actuator. The connection of the two ECUs is realized over
a bus-system, e.g. FlexRay. The sensor and actuator are
directly connected to the ECUs.

Models like this in this process are annotated with timing
information, which typically include:

• Periods, release times, offsets and deadlines of
runnables and tasks: Task T1 of the Base-Brake SWC
shall run once every 50ms and must be finished 30ms
after its release.

• Sampling rates: The pedal angle shall be sampled
once every 10ms.

• Bus configuration: The bus shall have a cycle length
of 100ms.

As mentioned previously, this information allows for,
for instance, detailed response time analysis, detailed
schedulability analysis of both bus frames, tasks and load
analysis of both ECU and bus, as well as the overall
system performance. The end-to-end requirement from
the design phase has been refined in the implementation
phase with respect to the event chain from sensor to
actuator. However, the situation in the implementation
phase is not as straight forward as in the earlier phases
with respect to analysis, due to the fragmentation into
task periods and bus cycles and slots. Often, continuous
real world entities such as the pedal angle changing over
time have been discretised into sampled messages with
a certain frequency. As different parts of the system may
have been developed by different suppliers, there is a risk
of ending up with a situation where periods of messages
and receiving tasks do not match, resulting in either over-
or under-sampling. If, for instance, the pedal angle sensor
has a sample rate of 50ms, but at the same time it is not
possible to have a repetition rate of 50ms on the bus, a
decision has to be taken, whether to send duplicate sensor
data or to sometimes miss sending data. This gives rise
to semantical problems related to end-to-end timing.

IV. TIMING SEMANTICS

We now introduce the corner stones of the TADL
semantics2: events, repetition-rate constraints, delay and
synchronization constraints, and delay composition and
decomposition.

Because TADL constraints are allowed to refer to arbi-
trary EAST-ADL or AUTOSAR structural models, a clear
separation needs to be made between the semantics
of these constraints and the semantics of the structural
models. The overall goal of TADL is to allow the timing
behavior of a structural model to be predicted and checked
against the TADL constraints by static analysis tools.
However, it is only the prediction part of such analyses that
requires knowledge of EAST-ADL/AUTOSAR semantics;
once a predicted behavior exists, the constraint checking
part should be possible to carry out without reference to
anything but the TADL constraint semantics.

2By the semantics of a constraint we mean the unambiguous interpre-
tation of the conditions that must hold for the constraint to be satisfied.

A note on notation: Syntactic objects like events, con-
straints and time will be referenced by simple variable
names in this chapter; for example, an event e, a constraint
c, or a time value t. To denote attributes and associations
of such an object we use a uniform functional notation,
where for example jitter(c) means the attribute jitter

of object c, and event(c) denotes the object reached
by following association event from object c. When se-
quences or other groups of objects are referenced we write
expressions like 〈t1, t2, t3〉 or 〈t1, . . . , tn〉 for a sequence
of known length, and 〈t, . . .〉 for a sequence of unspecified
length but beginning with t. We sometimes also need to
express intervals of values, for which we use the [t1 .. t2]
notation.

A. Events

An event is supposed to denote a distinct form of state
change in a running system, taking place at distinct points
in time called occurrences of the event. That is, a running
system can be observed by identifying certain forms of
state changes to watch for, and for each such observation
point, noting the times when changes occur. This notion
of observation also applies to a hypothetical predicted
run of a system or a system model — from a timing
perspective, the only information that needs to be in the
output of such a prediction is a sequence of times for each
observation point, indicating the times that each event is
predicted to occur. To this end, the semantics of TADL
only concerns the identity of events; that is, the particular
form of state change a distinct event refers to. The actual
dynamics of an event is merely an assumption — for a
particular event the semantics cannot be more specific
than to assume it occurs / have occurred / is predicted
to occur at some unknown times 〈t1, t2, . . .〉. Instead, the
role of the semantics is to show how these assumptions
must relate to each other for a particular set of timing
constraints to be satisfied.

Identity: We define a semantic function identity() on
events, that associates every event with an identifying list
of elements from the underlying structural model.

Equality: Two events e1 and e2 are equal (e1 = e2) if
and only if

identity(e1) = identity(e2)

That is, two events are equal only if they are identified by
exactly the same list of structural elements; it is generally
not enough that they have just some structural elements
in common.

Dynamics: We then capture the assumed dynamic
behavior of structural elements by means of a semantic
function dynamics(), which associates every list of struc-
tural elements that is an event identity according to the
definition above, with a sequence of time values. That is,
if identity(e) = s for some event e, then we assume

dynamics(s) = 〈t1, . . .〉

where 〈t1, . . .〉 is a sequence of strictly increasing
time values. Finally, we define the short-hand notation
dynamics(e) for an event e as



dynamics(e) = dynamics(identity(e))

B. Repetition-Rate Constraints

All repetition rate constraints place restrictions on the
distribution of the occurrences of an event, forming a so-
called event model. TADL includes the two most com-
mon examples of such models: the periodic event, which
prescribes an even distribution of occurrences, and the
sporadic model, whose distribution in non-deterministic
but characterized by a minimum distance between oc-
currences (thus reducing to the periodic model in the
worst case). To these TADL also adds two more elaborate
forms: a pattern model defined by a recurring sequence of
offsets between occurrences, and a model termed arbitrary
because of its ability to put arbitrary statistical restrictions
on event distributions.

However, the underlying TADL foundation for these
event models is the generic repetition rate constraint,
which allows the other forms of constraints to be defined as
special cases — either by making certain attribute choices
or by combining constraints in a certain way.

Syntax: A generic repetition rate constraint c is syn-
tactically characterized by the following attributes and
associations:

event(c) the event that is constrained

lower (c) a lower bound on the distance between
occurrences

upper(c) an upper bound on the distance
between occurrences

jitter(c) the deviation from an ideal point
accepted at each occurrence

span(c) a count indicating whether it is
subsequent occurrences or occurrences
farther apart that are constrained

All attributes except for event are optional, where ab-
sence of an attribute means that the following default
values apply:

lower default: 0 upper default: ∞

jitter default: 0 span default: 1

Semantics: A generic repetition constraint c is satisfied
for some given event behavior dynamics() if and only if

given 〈t1, t2, . . .〉 = dynamics(event(c))

there are times 〈x1, x2, . . .〉 such that

for all i > 1,

xi ≤ ti ≤ xi + jitter (c)

and for all i > span(c),

lower (c) ≤ xi − xi−span(c) ≤ upper(c)

That is, a generic repetition rate constraint is satisfied if
there exists ideal points in time not too far from the actual
event occurrences, that are also sufficiently close (distant)
according to the upper (lower) constraint attributes. Note

especially that for the default span value of 1, it is any two
subsequent occurrences of an event that are constrained,
whereas for a higher span count, the constraint instead
specifies the allowed ranges containing a larger number
of occurrences.

Verification procedure: To decide whether a particular
event behavior dynamics() satisfies a generic repetition
rate constraint c, execute the following pseudo-code pro-
gram:

let 〈t1, t2, . . .〉 = dynamics(event(c))

for all 1 ≤ i ≤ span(c)

let ai = ti − jitter (c)

let bi = ti

for all i > span(c)

let ai = max(ti − jitter(c), ai−span(c) + lower(c))

let bi = min(ti, bi−span(c) + upper(c))

check that ai ≤ bi

Intuitively, the ai and bi here constitute increasingly tight
bounds of the ranges in which the unknown time points xi

must be found, taking more and more event history into
account as i increases. The algorithm fails as soon as it
discovers that a range is empty, in which case there cannot
exist any xi as required by the semantics. Conversely, if
the algorithm succeeds, the ideal times xi are known to
exist.

C. Delay Constraints

A delay constraint restricts the occurrences of one group
of event to match the occurrences on another. TADL
introduces the concept of an event-chain for this purpose,
which references two groups of events called stimulus and
response. The intuition behind an event-chain is that each
event in the stimulus group somehow causes, or at least
affects the value of all events in the response group. TADL
defines its delay constraint semantics solely in terms of the
times at which the stimulus and response events occur,
independently of whether there actually exists a causal
connection between these events in the structural model.

There are two fundamentally different perspectives on
delays expressible in TADL: (a) the reaction time con-
straint, which for each occurrence of a stimulus event re-
quires a response occurrence at some constrained point in
the future, and symmetrically the (b) age constraint, which
looks at each response event occurrence and expects to
find a stimulus occurrence at some constrained point in
the history.

Syntactically, a delay constraint c is characterized by the
following attributes and associations:

scope(c) the constrained event chain

lower(c) a time offset indicating the near edge
of a time window

upper(c) a time offset indicating the far edge
of a time window

An event chain E, in turn, is characterized by



stimulus(E) the group of events acting as stimuli

response(E) the group of events acting as
responses

segment(E) a sequence of event-chains
refining E

strand(E) a group of parallel event-chains
refining E

A discussion on the latter two associations will be
deferred until Section IV-E. Moreover, the stimulus and
response of an event-chain will only be used when fol-
lowing a scope association from a delay constraint. We
can therefore avoid the explicit mentioning of event-chains
in our semantic definitions, by introducing the following no-
tational short-hand of stimulus and response associations
for a delay constraint c:

stimulus(c) = stimulus(scope(c))

response(c) = response(scope(c))

The reaction time and age constraints are both spe-
cializations of a delay, adding no attributes of their own
but being defined with two different (but very symmetrical)
semantics.

Syntax: A reaction time (or age constraint) c is syn-
tactically characterized by the following attributes and
associations (all inherited from the delay constraint syntax,
including notational shorthand):

stimulus(c) a group of events acting as stimuli

response(c) a group of events acting as
responses

lower (c) a time offset indicating the near edge
of a time window

upper(c) a time offset indicating the far edge
of a time window

Semantics: A reaction time constraint c is satisfied for
some given event behavior dynamics() if and only if

for all events s in stimulus(c),

for all times t in dynamics(s),

for all events r in response(c),

there exists at least one time u in dynamics(r) such that

t + lower (c) ≤ u ≤ t + upper(c)

Verification procedure: To decide whether a particular
event behavior dynamics() satisfies a reaction time con-
straint c, execute the following pseudo-code program:

for all events s in stimulus(c)

for all times t in dynamics(s)

let T = [t + lower(c) .. t + upper(c)]

for all events r in response(c)

let U = dynamics(r) ∩ T

check that U = 〈u, . . .〉

Semantics: An age constraint c is satisfied for some
given event behavior dynamics() if and only if

for all events r in response(c),

for all times t in dynamics(r),

for all events s in stimulus(c),

there exists at least one time u in dynamics(s) such that

t − upper(c) ≤ u ≤ t − lower (c)

Verification procedure: To decide whether a particular
event behavior dynamics() satisfies an age constraint c,
execute the following pseudo-code program:

for all events r in response(c)

for all times t in dynamics(r)

let T = [t − upper(c) .. t − lower (c)]

for all events s in stimulus(c)

let U = dynamics(s) ∩ T

check that U = 〈u, . . .〉

D. Synchronization Constraints

TADL also defines a synchronization constraint as a
delay constraint that adds the attribute

width(c) a sliding window size

to those inherited from the delay constraint syntax. The
intuition behind a synchronization constraint is that it
strengthens the requirements of a delay to also impose
a limit on how much the constrained occurrences can
differ from one another — typically a range much more
narrow than the window in which the individual events
are expected to occur. Two specializations are defined
by TADL: output synchronization strengthens a reaction
constraint, and input synchronization is semantically a
strengthening of an age constraint.

Semantics: An output synchronization constraint c is
satisfied for some given event behavior dynamics() if and
only if

for all events s in stimulus(c),

for all times t in dynamics(s),

there exists a time x such that

for all events r in response(c),

there exists at exactly one u in dynamics(r) such that

t + lower (c) ≤ u ≤ t + upper(c)

and moreover, for this u,

x ≤ u ≤ x + width(c)

Verification procedure: To decide whether a particular
event behavior dynamics() satisfies an output synchro-
nization constraint c, execute the following pseudo-code
program:

for all events s in stimulus(c)

for all times t in dynamics(s)

let T = [t + lower (c) .. t + upper(c)]



for all events r in response(c)

let U = dynamics(r) ∩ T

check that U = 〈u〉

let as = u − width(c)

let bs = u

let a = max(all as)

let b = min(all bs)

check that a ≤ b

Semantics: An input synchronization constraint c is
satisfied for some given event behavior dynamics() if and
only if

for all events r in response(c),

for all times t in dynamics(r),

there exists a time x such that

for all events s in stimulus(c),

there exists at exactly one u in dynamics(s) such that

t − upper (c) ≤ u ≤ t − lower (c)

and moreover, for this u,

x ≤ u ≤ x + width(c)

Verification procedure: To decide whether a particular
event behavior dynamics() satisfies an input synchro-
nization constraint c, execute the following pseudo-code
program:

for all events r in response(c)

for all times t in dynamics(r)

let T = [t − upper(c) .. t − lower (c)]

for all events s in stimulus(c)

let U = dynamics(s) ∩ T

check that U = 〈u〉

let as = u − width(c)

let bs = u

let a = max(all as)

let b = min(all bs)

check that a ≤ b

E. Delay composition and decomposition

A very strong property of TADL is that its delay concept
adds up sequentially, so that a set of delay constraints on
multiple interconnected event-chains can be replaced by
a single constraint describing the end-to-end delay of the
composed event-chain; or conversely, an end-to-end delay
can be broken down into smaller intervals with preserved
overall semantics. Such sequential composition and de-
composition of delay constraints is an important activity
in the negotiation process between automotive OEMs and
their suppliers. For example, suppliers may provide their
components as TADL models that are like black boxes from
a functional point of view. Such a model characterized by a
few timing parameters still allow the OEM to calculate the
overall delay imposed by a chain of such components. Or

the OEM may divide the timing constraints of a complex
functionality into multiple constraints, to be supplied by
separate suppliers.

Moreover, TADL supports parallel composition and de-
composition of delay constraints. While this notion is
intuitively simple (each part in a parallel decomposition
is expected to satisfy the prescribed end-to-end delay),
it is nevertheless important when a modeler wishes to
express several alternative designs in one model, while
resting assured that any choice taken will indeed satisfy
the given overall timing requirements.

In both the sequential and the parallel case, it is
meaningless to mix age and reaction time constraints
in a particular constraint composition/decomposition. We
therefore only consider composing or decomposing similar
timing constraints either just ages or just reaction times
and make this an implicit syntactic requirement in the
descriptions that follow.

In the general case, it is allowed to constrain the
same event-chain with several age constraints and several
reaction constraints. An event chain has a number of other
event chains each playing the role of a segment. Each
of these segments can of course also have as well age
constraints as reaction constraints. The above statement
of not mixing age and reaction time, relates to whether
it is possible to draw any conclusion between the delay
constraint of an event chain and the sum of the delay
constraints of its segments. This kind of conclusions can
only be drawn when all the considered constraints are of
the same kind (age or reaction).

Sequential composition and decomposition: A se-
quence of event chains 〈E1, . . . , En〉 is a sequential
decomposition of an event chain E, and E is a sequential
composition of 〈E1, . . . , En〉, if the following conditions
hold:

stimulus(E) = stimulus(E1)

stimulus(Ei) = response(Ei−1) for 1 < i ≤ n

response(E) = response(En)

The fact that 〈E1, . . . , En〉 is a sequential decomposi-
tion of E can be explicitly marked in E by setting

segment(E) = 〈E1, . . . , En〉

A sequence of age (reaction time) constraints
〈c1, . . . , cn〉 is a sequential decomposition of an age
(reaction time) constraint c if 〈scope(c1), . . . , scope(cn)〉
is a sequential decomposition of scope(c) (and conversely
for composition).

A sequence of age (reaction time) constraints
〈c1, . . . , cn〉 is stronger (accepts no more variations in
event dynamics) than its sequential composition c if

upper(c1) + . . . + upper (cn) ≤ upper(c)

lower(c1) + . . . + lower (cn) ≥ lower (c)

An age (reaction time) constraint c is stronger than its
sequential decomposition 〈c1, . . . , cn〉 if

upper(c) ≤ upper(c1) + . . . + upper(cn)



Fig. 3. Example of input synchronization

lower (c) ≥ lower (c1) + . . . + lower (cn)

Taken together, these relations state that an age (re-
action time) constraint c and its sequential decomposition
〈c1, . . . , cn〉 are equivalent (accept the same variations in
event dynamics) if

upper(c) = upper(c1) + . . . + upper (cn)

lower (c) = lower (c1) + . . . + lower (cn)

Parallel composition and decomposition: A group
of event chains 〈E1, . . . , En〉 is a parallel decomposition
of an event chain E, and E is a parallel composition of
〈E1, . . . , En〉, if the following conditions hold:

stimulus(E) = stimulus(Ei) for 1 ≤ i ≤ n

response(E) = response(Ei) for 1 ≤ i ≤ n

The fact that 〈E1, . . . , En〉 is a parallel decomposition
of E can be explicitly marked in E by setting

strand(E) = 〈E1, . . . , En〉

A group of age (reaction time) constraints 〈c1, . . . , cn〉
is a parallel decomposition of an age (reaction time)
constraint c if 〈scope(c1), . . . , scope(cn)〉 is a parallel de-
composition of scope(c) (and conversely for composition).

A group of age (reaction time) constraints 〈c1, . . . , cn〉
is stronger (accepts no more variations in event dynamics)
than its parallel composition c if

upper(ci) ≤ upper(c) for 1 ≤ i ≤ n

lower (ci) ≥ lower (c) for 1 ≤ i ≤ n

An age (reaction time) constraint c is stronger than its
parallel decomposition 〈c1, . . . , cn〉 if

upper(c) ≤ upper(ci) for 1 ≤ i ≤ n

lower (c) ≥ lower (ci) for 1 ≤ i ≤ n

Taken together, these relations state that an age (re-
action time) constraint c and its parallel decomposition

〈c1, . . . , cn〉 are equivalent (accept the same variations in
event dynamics) if

upper(c) = upper(ci) for 1 ≤ i ≤ n

lower(c) = lower (ci) for 1 ≤ i ≤ n

F. Verification example

Consider the input synchronization constraint defined by

stimulus(c) = 〈S1, S2, S3〉

response(c) = 〈R〉

lower(c) = 3

upper(c) = 5

width(c) = 1

Assume that the actual occurrences of the events S and
R are as follows:

dynamics(S1)= 〈1, 3, 7.5, 10, 12, 14.5, 16, 19.5〉

dynamics(S2)= 〈1.5, 4, 8, 11, 13.5, 15.5, 18, 20〉

dynamics(S3)= 〈0.5, 2.5, 7.5, 10.5, 11.5, 14, 16〉

dynamics(R) = 〈5, 12, 20〉

The actual occurrences of the events in the synchroniza-
tion and reference groups are given in Figure 3, together
with the reference window for each occurrence of the
response event R.

In this example, there are three events in stimulus(c)
namely event S1, S2 and S3. And there is one event
in response(c) namely event R. In Figure 3, for each
occurrence of the response event R, there is a reference
window backward in time in which exactly each one of the
three stimulus events must occur. For the response event
R occurred at time instant t, we must have a unique occur-
rence of each of the stimulus events S1, S2 and S3 within
t − upper(c) and t − lower (c). Moreover, the distance
between any two of the three stimulus events must not be
separated by a distance greater than width(c) = 1. There
are three occurrences of the event R.



For the response event R that occurs at time t = 5,
there are unique occurrences of the three stimulus events
between time instants 5 − upper(c) = 5 − 5 = 0 and
5 − lower (c) = 5 − 3 = 2. The time interval [0 .. 2] is the
reference window for the first occurrence of event R. The
events S1, S2 and S3 occur uniquely within the reference
window at time 1, 1.5, and 0.5, respectively (left-most oval
in Figure 3). These occurrences of the synchronization
events are within a sliding window of length 1.

For the response event R that occurs at time t = 12,
there are unique occurrences of the three stimulus events
between time instants 12 − upper (c) = 12 − 5 = 7 and
12 − lower = 12 − 3 = 9. The time interval [7 .. 9] is
the reference window for the third occurrence of event R.
The events S1, S2 and S3 occur uniquely within reference
window at time 7.5, 8, and 7.5, respectively (middle oval
in Figure 3)). These occurrences of the synchronization
events are within a sliding window of length 1.

For the response event R that occurs at time t = 20,
there are unique occurrences of the three stimulus events
between time instants 20 − upper (c) = 20 − 5 = 15 and
20 − lower (c) = 20 − 3 = 17. The time interval [15 .. 17]
is the reference window for the first occurrence of event R.
The events S1, S2 and S3 occur uniquely within reference
window at time 16, 15.5, and 16, respectively (right-most
oval in Figure 3). These occurrences of the synchronization
events are within a sliding window of length 1.

Since, for all three occurrences of response event R,
there are unique occurrences of each of the three stim-
ulus events within the sliding window which is within the
reference window, the input synchronization constraint is
satisfied.

V. RELATED WORK

While single-processor scheduling analysis has been
studied extensively, end-to-end timing has received much
less attention. Task-offset analysis [4], [5], [6] calculates re-
sponse times of transactions comprised of several chained
tasks. Richter et al. [7] introduced a compositional schedul-
ing model that uses such response-time calculations for
local transactions and then characterize the external inter-
action of these components through event stream models.
Chakraborty and Thiele [8] followed another compositional
approach based on real-time calculus with local service
and arrival curves to calculate delays and backlogs. The
work mentioned above focused mostly on FIFO queuing
on non-multi-rate systems.

Mangeruca, Beneviste, and others [9], [10] proposed a
relaxation that supports multi-rate systems. The proposed
mechanisms ensure “semantics preservation” by deliber-
ately constraining the way the consumer must access the
FIFO buffers. In a similar way, Matic and Henzinger [11]
proposed slight changes to the way task schedules are
built during system generation by model-based design
tools. Both approaches require that certain platform mech-
anisms are used in a way that preserves the semantics of
the communication. Such restrictions compromise to some
extent the broad applicability of the approach.

Gerber et. al. studied multi-rate communication [12] with-
out requiring special semantic preservation mechanisms.
The main drawback with this approach is that it requires
that task periods can be changed freely, something that
is very uncommon in automotive design. Guermazi and
George [13] really analyze periodic systems by calculating
response times locally for each involved component, and
then create the worst-case sequencing of them by compo-
sition. Unfortunately, the approach assumes “worst-case
asynchronicity” and does not account for offsets, which
means that the results are overly pessimistic and therefore
of limited relevance in automotive systems.

VI. CONCLUSIONS

TADL introduces two distinct forms of delay constraints,
age and reaction time, and a very general form of rep-
etition rate constraint that can be specialized to capture
the standard periodic/sporadic event models as well as
recurring event patterns and arbitrary event distributions.
The semantics of the different constraint forms has been
formalized, and algorithmic verification procedures have
also been defined.

Furthermore, the TIMMO methodology enables the iden-
tification of timing information and validation of timing
behaviour throughout the development process. Timing
constraints and properties can systematically be controlled
and validated during all design stages and also across
collaborating design teams. This leads to a better under-
standing of a system’s timing behaviour already at very
early phases in the design.

REFERENCES

[1] TIMMO – Timing Model, The TIMMO Consortium, 2008, URL:
http://www.timmo.org.

[2] The AUTOSAR Development Partnership, “Automotive Open Sys-
tem Architecture (AUTOSAR),” 2003, URL: http://www.autosar.org.

[3] The ATESST Consortium, “Advancing Traffic Efficiency and Safety
through Software Technology,” 2009, URL: http://www.atesst.org.

[4] K. Tindell, “Adding time-offsets to schedulability analysis,” Dept. of
Computer Science, Univ. of York, UK, Tech. Rep. YCS 221, 1994.

[5] J. C. Palencia and M. G. Harbour, “Exploiting precedence relations
in the schedulability analysis of distributed real-time systems,” in
Proc. of the IEEE Real-Time Systems Symp., 1999, pp. 328–399.

[6] O. Redell, “Accounting for precedence constraints in the analysis
of tree-shaped transactions in distributed real time systems,” Royal
Inst. of Tech., Sweden, Tech. Rep., 2003.

[7] K. Richter, D. Ziegenbein, M. Jersak, and R. Ernst, “Model compo-
sition for scheduling analysis in platform design,” in Proceeding 39th
Design Automation Conference, New Orleans, USA, Jun. 2002.

[8] L. Thiele, S. Chakraborty, and M. Naedele, “Real-time calculus for
scheduling hard real-time systems,” in Proc. Int’l Symp. on Circuits
and Systems (ISCAS), Geneva, Switzerland, 2000.

[9] L. Mangeruca et al., “Semantics-preserving design of embedded
control software from synchronous models,” IEEE Trans. Software
Eng., vol. 33, no. 8, pp. 497–509, 2007.

[10] A. Benveniste et al., “Loosely time-triggered architectures based on
communication-by-sampling,” in Proc. of the 7th ACM & IEEE Int’l
Conf. on Embedded Software, New York, USA, 2007, pp. 231–239.

[11] S. Matic and T. A. Henzinger, “Trading end-to-end latency for
composability,” in Proc. of the IEEE Real-Time Systems Symp.,
Washington, DC, USA, 2005, pp. 99–110.

[12] R. Gerber, S. Hong, and M. Saksena, “Guaranteeing end-to-end
timing constraints by calibrating intermediate processes,” in Proc. of
the IEEE Real-Time Systems Symp., 1994, pp. 192–203.

[13] R. Guermazi and L. George, “Worst case end-to-end response times
of periodic tasks with an AUTOSAR/FlexRay infrastructure,” in 7th
International Workshop on Real-Time Networks RTN’08, 2008.


	Introduction
	Project Context
	The TIMMO Design Framework
	Methodology Overview
	Vehicle definition phase
	System definition phase
	Design Phase
	Implementation phase

	Timing Semantics
	Events
	Repetition-Rate Constraints
	Delay Constraints
	Synchronization Constraints
	Delay composition and decomposition
	Verification example 

	Related Work
	Conclusions
	References

